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Starting with the Hamiltonian for a linear harmonic chain of 2N particles 
of mass rn and one of mass M, we have carried out numerical calculations 
for the momentum autocorrelation function of the mass defect particle for 
chains with finite number  N of mass points and for nonzero values of the 
mass ratio/z ~ m/M. These results have been compared with the well-known 
exponential relaxation of the momentum autocorrelation function which 
is found to be the rigorous result when passing to the thermodynamic and 
weak-coupling limit. In these limits, the dynamics of the mass defect particle 
is exactly described by a Fokker-Planck equation, i.e., a stochastic equation 
of motion. We have shown that, to an excellent approximation, an exponential 
relaxation of the momentum autocorrelation function is obtained for mass 
ratios as high as/~ = 0.1 and for chains with only 50 particles. Thus, for the 
harmonic chain considered here, the stochastic equations of motion can be 
applied to a very good approximation far outside the usually imposed 
thermodynamic and weak-coupling limits. 
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I= I N T R O D U C T I O N  

In the derivation of the master equation of nonequilibrium statistical 
mechanics from the Liouville equation, two limiting processes are always 
invoked. (1) First, one performs calculations in the thermodynamic limit in 
which the size of the system and the number of particles in the system are 
allowed to increase without bound in such a way that the concentration 
(number per volume) of the particles remains finite. The other limit is the 
weak-coupling limit, where some interaction parameter is allowed to approach 
zero "while the time approaches infinity such that their product is a constant. 
The passage to these limits is essential in the rigorous derivation of the master 
equation from the Liouville equation.(Z) 

From a practical point of view, however, all physically realizable systems 
are finite, the interaction parameter does not go to zero, and it is too time- 
consuming to make observations as time goes to infinity. The question thus 
arises as to just what error is involved in applying stochastic equations to 
finite systems with finite-strength interactions. It is to this question that this 
paper is addressed. 

Our model system for this study is the ubiquitous linear harmonic chain 
and the specific property to be investigated is the momentum autocorrelation 
function of a mass defect particle in the chain. We have chosen this model 
since it is possible to carry out exact dynamic calculations for the auto- 
correlation function for finite chains with finite interaction forces. These can 
then be compared with known analytic stochastic results obtained in the 
thermodynamic (infinite chain) and weak-coupling (infinite mass defect) 
limits. (2) Since the ultimate aim of  any dynamic theory is the calculation of 
some average time-dependent quantity, the examination of the momentum 
autocorrelation function is an appropriate test for the validity of the stochastic 
equations. 

It is known ~3) that the dynamical behavior of local properties in a finite 
chain of N oscillators with short-range forces is essentially identical with the 
N -+ cc results over a range of time which is proportional to the size N of 
the system and depends on the mass ratio. We present a numerical study 
of this situation which clearly demonstrates this point. We find that for 
N ~-~ 50, the computer results on the relaxation of the momentum auto- 
correlation functions are indistinguishable from the thermodynamic limit 
results over a range of  time in which the autocorrelation function has relaxed 
essentially to its zero value. This certainly indicates, at least for the model 
studied here, that the stochastic equations are valid for finite systems far 
removed from the thermodynamic limit. 

We have also examined numerically the weak-coupling limit. It is 
known (2) that in a one-dimensional harmonic lattice with point masses m 
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and an impurity of  mass M, the heavy particle undergoes Brownian motion 
in the weak-coupling limit/z ~_ m / M  --~ 0, t - +  oo, i z t  = c. This implies that 
in this limit, the momentum autocorrelation function decays exponentially. 
Our numerical computer study shows that this exponential decay of the 
momentum autocorrelation function is also obtained to within a very close 
apprximation for nonzero values of /z  and for finite times. Thus, excellent 
agreement with exponential relaxation is already found for/~ = 0.1, i.e., for 
M -- 10m. Clearly, the stochastic results are again in excellent agreement with 
the exact dynamic results far from the weak-coupling limit. 

We have also studied the infinite chain with long-range interactions. We 
have shown that one obtains an excellent approximation to the exponential 
relaxation of the autocorrelation function of the heavy impurity M for/z > 0, 
and 0 < y < 1, where y is an interaction parameter such that 7,---~ 0 corres- 
ponds to nearest-neighbor interactions and y --~ 1 corresponds to interactions 
of  zero strength and infinite extent. 

In Section 2, we introduce the model Hamiltonian and indicate the 
various representations from which one can compute the momentum 
autocorrelation function of the impurity. In Section 3, we discuss the auto- 
correlation function for finite systems and for finite interaction strength for 
chains with nearest-neighbor interactions. In Section 4, we introduce the 
chain with long-range interactions and discuss the new features which occur 
in this system. In Section 5, we present a summary and discussion of our 
results. 

2. H A M I L T O N I A N  A N D  R E P R E S E N T A T I O N  OF 
A U T O C O R R E L A T I O N  FU N C T I O N  

The Hamiltonian appropriate to a chain of 2N particles of mass m and 
one of mass M bound by harmonic nearest-neighbor forces with cyclic 
boundary conditions is 

2N 2N--I 

H = (1/2M) 1% -k (1/2m) ~ / ~ 2  q_ �89 ~ (4k --  {~+1) ~ 
k=l k=l 

= + �89 - ~)~ - (0 - ~)~1 (1) 

Here, the {Pk, ~} are the momenta and positions of  the 2N equal mass 
particles, P and ~ are the momentum and position of the impurity particle, 
and c~ is the force constant. If  one partially diagonalizes this Hamiltonian 
according to the transformations 

r n - : / ~ k  = p~ ' ,  M - 1 / ~ P  ~ p 
(2) 

rrll/e~7 ~ = q~', M1 /~  O --_ Q 
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and 

with 

one obtains 

2N 2N 

b~ = Z Tk~p,', ~k : Z T~zq,' (3) 
t~l l= l  

T~ = [2/(2N -t- 1)11/3 sin[klrc/(2N + 1)1 

2N 2N 

H = �89 + f22Q2) + �89 Z [(Pk') 2 + ~%2(q ,)~] + ix1/2 ~ Ekq~'Q 
/~=I ]c=l 

with 

o)~ 2 = OJo~ sinZ[krr/2(2N § 1)], COo 2 = 4c~/m, 

where co o is the m a x i m u m  frequency of  the chain, 

(4) 

(5) 

[22 = �89 2 (6) 

% = --�89 + 1)11/2 sin[k~/(2N + 1)l, 

E k = 0 :  

and 

i ~ = m / M  

k -= 1, 3,..., 2N - -  1 
(7) 

k = 2, 4,..., 2N 

(8) 

In  this form,  the Hami l ton ian  exhibits an explicit dependence on the mass 
ratio/~, which is a convenient  fo rm for  our  discussion of  the weak-coupl ing 
limit. We now t rans form to the fully diagonal  fo rm with 

Q = ~ '  Xoff/j , P = ~ '  XojFIj 
J J 

=_ ~ '  qk' Xkj~j , p~' = ~ '  X~jHr , (9) 
J 5 

q~  = ~2k, P~k =- H2~ , 

k =  1 , 3 , . , 2 N - - 1  

k = 1 , 2 , . . . , N  

where the pr ime on the sums indicates j = 0, 1, 3,..., 2N - -  1. 
By direct substitution, one then finds that  the secular equat ion m a y  be 

writ ten in the fo rm (~) 

with 

a ( z )  = 0 = z - f22 - TN(Z)  ( l O )  

2N 

rN(z)  = Y~ [E,'/(z - o~i')1 (11) 
i=1  
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The solutions {z = s~ 2} o f  this secular equat ion are the eigenfrequencies {s,} 
o f  the fully diagonalized Hamil tonian .  In addition, one finds that  

with 

X0~ = 1/ [1  -~- SN(k)] (12) 

2N 
SN(k) = 2 [r oV) ~] (13) 

i=1 

As indicated in the introduct ion,  we shall focus on the m o m e n t u m  
autocorre la t ion funct ion p of  the impunity.  The  normal ized correlat ion 
funct ion is given by 

p(t) = (PP(t))/(P z) (14) 

where the brackets  denote  the canonical  average 

(A(P, Q, par, qN)} ~ _  f dP dQ dp • dq N e-ellA(P, Q, pN, qN) (15) 
f dP dQ dp N dq N e-Ca 

I f  one now uses the equations of  mot ion  o f  the harmonic  lattice and  the 
indicated canonical  t ransformat ions  [Eqs. (1)-(13)], one finds that  

ON(/Z, t) = Z '  X0~ cos s,J, k = 0, 1,..., 2 N  - -  1 (16) 
k 

where X0~k is given by Eq. (12) and where the {s~} are the normal  mode  
frequencies o f  the fully diagonalized Hamil tonian .  The  representat ion (16) 
is convenient  for  discussing the m o m e n t u m  autocorre la t ion funct ion for  the 
finite-N case if  one can sum the functions TN and SN of  Eqs. (11) and (13). 
These sums have been evaluated and yield (5) for  G(z) and SN(a~) 

G(c~k) = 0 = (1 - - /z )  - - / z  cot[zrak/2(2N -k 1)][(cot zr~, - -  csc ~r~)], 

k = 1 , 3 , . . . , 2 N - -  1 (17) 

and 

SN(~k) = [~/2 cos2(~l-~r~)]{2W + cot[Tr~k/(2N + 1)] sin 7rak - -  cos ~r~}, 

k =  1 , 3 , . . . , 2 N - - 1  (18) 

where the ~ are related to the normal ized eigenfrequencies sk by 

sk 2 = sin2[Trc%/2(2N + 1)], k = 1, 3 ..... 2 N  - -  1 (19) 

I t  is easy to see that  as /z -+  1, one just  recovers the equal-mass  nearest-  
neighbor  spectrum 

sk2(/x = 1) = sin~[zrk/2(2N + 1)] (20) 
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To study the effect of the mass ratio /, in the thermodynamic limit, 
N ~ m, it is more convenient to represent the momentum autocorrelation 
function by 

p(t) = (1/2~ri) f {[eos(zl/~t)]/G(z)} dz (21) 

where the contour is chosen as a circle in the complex z-plane enclosing all 
the zeros of G(z). The representation (21) is equivalent to that in (16). Note 
that in the limit N--+ 0% the zeros of G(z) become dense on the interval 
(0, coo 2) and one may then contract the above contour to an integral running 
just above and below the real axis in this interval. I f  one computes G(z) from 
Eqs. (10) and (11) in the limit N --+ o% one obtains 

I § O(r) ----- (/,/2rr) {(1 --  xe)i/~/[(1 - -  2/*) x ~ -k /*~]} cos x r  dx (22) 

where we have introduced the scaled time 

r = COot (23) 

This spectral representation holds for 0 < / ~  ~ 1; for/z > 1, a light impurity, 
one obtains another term corresponding to an isolated frequency which gives 
rise to a purely periodic component in the correlation function. (6m 

This completes the summary of the equations for the oscillator chain 
with nearest-neighbor interactions. In the next section, we discuss the results 
of computer solutions of Eqs. (16) and (22). 

3. C A L C U L A T I O N  OF A U T O C O R R E L A T I O N  F U N C T I O N S  

We first consider the momentum autocorrelation function of the mass-M 
particle in the thermodynamic limit with the help of Eq. (22). This integral 
cannot be evaluated analytically except for/z = �89 and/z = 1. For /z  ~< 1, it 
has an expansion in the form (6,7) 

= 

(24) 

= Jo(r) + [2(1 --/*)/(1 --  2/*)] ~ (1 -- 2/*) t g=,(r) 

This expressions simplifies for certain mass ratios; f o r / ,  = 1, equal-mass 
particles, one obtains 

p(z) = Jo(r) (25) 

and for/x = �89 

p(r) = ao(r) + J2(r) (26) 
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In the combined weak-coupling limit, F - +  0, r - - ,  o% F7 = const, and 
thermodynamic limit, N --+ 0% one obtains from the spectral representation, 
Eq. (21), the well-known result 12) 

l i m  p (7 )  = e - "~  (27 )  
, ~ 0  

,t,c,'r~ C 

The physical basis of the weak-coupling limit is the existence of processes 
occurring on different time scales. Processes which occur slowly relax to 
equilibrium in the "mean field" of the fast processes. In the present example, 
the equal-mass particles relax on a time scale of 1/OJo, while the momentum 
of the heavy particle (M >~ m) relaxes on a time scale measured by the mass 
ratio F = m/M. This latter time scale is slow compared to the 1/~o 0 time 
scale of the mass-m particles. In the limit when F = 0, the momentum of the 
heavy particle is a constant of  the motion. 

To obtain information about the form of  the momentum autocorrelation 
function for nonzero F ~< 1, we have numerically integrated Eq. (22). In 
Fig. 1, we plot O(-r) versus -r for various values of F. The time is measured in 
units of  the maximum frequency co 0 of the lattice, which is typically of order 
10 -13 sec. The damped oscillatory behavior is clearly evident from this 
figure, but for F = 0.1, one already has behavior suggesting exponential 
decay. A log plot of  these data in Fig. 2 shows that, for all intents and pur- 
poses, one has reached the weak-coupling limit when F = 0.1. A comparison 
of  the values of exp(--FT ) and p(-r) of Eq. (22) for/z = 0.1 in Table I shows 
that they differ by only 1 ~ for T >/6,  i.e., for times longer than about 
6 • 10 -13 see. 

i F i i i t J i 

1.0 

0.8 l 
0.6 

W ~_a4 

F=0.5 

-0.2 
I l J I l I I I ] 
4 8 .12 16 20 24 2B 32 36 40 

2- 

Fig. 1. Normalized momentum autocorrelation function P(%/~) for /~ = 0.05, 0.1, and 
0.5. The scaled time r is measured in units of the maximum frequency oJo of the lattice. 
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Fig. 2. 

LO 

O.Oi 6 IZ 18 30 56 42 

T 

A logarithmic plot of p(r, tz) versus r for t~ = 0.5 and/z = 0.1. The circles are 
data points; the data are closely approximated by a straight line. 

Table  !. Comparison of e x p ( ~ w r  ) and p(~, 7) of Eq. (22) for [~ = 0.t 
i .  

~" exp(--t~z) p(t~, ~') 

0 1.000 1.000 

3 0.741 0.819 

6 0.549 0.570 

9 0.407 0.415 

12 0.301 0.292 

15 0.223 0.212 

18 0.165 0.159 

21 0.122 0.108 

24 0.090 0.076 

27 0.067 0.056 

30 0.050 0.039 

33 0.037 0.028 

36 0.O27 0.020 
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Note that there is an initial transient period where the autocorrelation 
function must be Gaussian for any/~.(m On the other hand, for long times, 
i.e., times ~- greater than the exponential decay time 1/if, one has a correction 
of damped oscillatory form to the weak-coupling limit. These contributions 
to P0-) are, however, less than 0.1 ~ of the initial value p(0). 

It should be noted that the mass ratio appears as the square root  in the 
Hamiltonian, Eq. (5), so that one has exponential relaxation of  the auto- 
correlation function for a value of 0.3 of the "small" parameter in the 
Hamiltonian. 

For the case of finite N, we must find the eigenfrequencies of the secular 
equation (10) which are the solutions of  the transcendental equation (17). 
There are only N -k l modes which are pertinent to this problem: the zero- 
frequency mode due to the translational invariance of the lattice and N 
modes arising from the symmetric modes of the unperturbed lattice. The 
antisymmetric modes have a node at the position of  the heavy-mass 
particle and thus do not influence its dynamical behavior. These N 
frequencies {sk} for k = 1, 2 ..... 2N --  1 are easily found numerically from 
Eqs. (17) and (19) and are used to obtain the X02~ with the help of Eqs. (12) 
and (13). The momentum autocorrelation function was then calculated by 
carrying out the summation in Eq. (16). In Fig. 3, we plot the calculated 
values of PN(t*, '7") versus -r for various small values of N. 

As has been pointed out by Rubin m) and others, one expects that for 
times less than those required for a signal to propagate around the lattice, 
the autocorrelation function should closely approximate the N ~ oo result. 

LO 

0 .8  

06  

~ 0.4 

()2 

O0 

- 0 2  

- -  t I I t I I ~ I 

N : I 2  

T 

} 

j 
I 

I 08  120 

Fig. 3. Normalized momentum autocorrelation function pN(z, tz) for 2N + 1 particles 
with N = 12 and N = 24 and ~ = 0.1. 
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This is due to the fact that there is, to a good approximation, no way for the 
signal to know that it is traveling in a finite lattice until it reaches the 
boundaries. For a signal traveling in the lattice with the speed of sound, the 
time ~- (=mot) required to propagate around a lattice of  2N mass points is 
~- ~ 2N. For  times -r < 2N, the results for the finite lattice should thus be 
numerically indistinguishable f rom those of the infinite lattice. This is borne 
out by the calculations presented here. Furthermore, for relatively small 
values of/x, for which p(~-) decays fairly rapidly, the finite-N results are in 
excellent agreement with the thermodynamic limit results even when N is 
only of the order of  50. Thus even in a harmonic system where one has 
coherent signal propagation, small-N results are quite accurate in describing 
the dynamics of local perturbations. One must, of  course, restrict such 
statements to systems with potentials whose range is small compared to the 
size of  the system, as otherwise the boundaries would be "felt" by the signal 
at all times. 

This "recurrence" time z N 2N bears no relation to the Poincard 
recurrence time, which refers to the recurrence of a particular phase point. 
These latter times are much longer than any time scale considered here. (9) 

4. A U T O C O R R E L A T I O N  F U N C T I O N  FOR LATTICE W I T H  
L O N G - R A N G E  I N T E R A C T I O N  

In this section, we turn our attention to the case of  a harmonic lattice 
with long-range interactions. We consider here only the case of  the infinite 
chain. 

The Hamiltonian can be written as 

2N 2N 2N 

H = (1/2M)p2 -t- (1/2m) ~ p~ -[- �89 y' ~ qkA~jqj (28) 
k=l k=0 j=0  

where we take q0 = Q. We impose periodic boundary conditions on the 
chain and assume that 

Aes = AI~_~I = At (29) 

This last condition expresses the physically realistic assumption that the 
interaction between two mass points depends only on their separation in 
the lattice. We take the interaction to be of  the form 

A t = ( a / m ) ( 1 - - y ) V t - 1 ,  0 < ~ , < 1 ,  l----- 1,2 .... (30) 

Note that as ~,--~ 0, one recovers the nearest-neighbor interaction and as 
7 ~ 1, one obtains an interaction of zero strength and infinite extent. The 
normalization factor (1 --  ~,) ensures that the total potential energy of the 
infinite system remains constant for all ~,. 
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By procedures analogous to those used in obtaining Eq. (22), the spectral 
representation of the momentum autocorrelation function of the heavy 
particle is found to be 

P(m ~', ~) 
A(m, y) F 

3_~ ~ + 2~(1 - ~) roB(m, Y) + m~(~ - ~)~ [A~(m, r) + B~( m, r)] 
X c o s  m r  do) (31)  

where 

A(m, y) = (1 -- yu)/{(1 -- m2)1/2[(1 + y)2 _ 4ymq} (32) 

B(m, y) = 4ym/[4ym 2 -- (1 + y)21 (33) 

r = [OJo/(1 4-  y)a/2] t (34) 

and where the frequency m is now dimensionless, having been scaled by the 
maximum frequency m 0 . The autocorrelation function p(/~, 7, r) of Eq. (31) 
can easily be evaluated for different values of /~ and Y by numerical 
integration and some representative results are displayed in Fig. 4. The same 
damped oscillatory behavior as shown in Fig. 1 for nearest-neighbor inter- 
actions is obtained in this case for intermediate values of ~ and Y. For  small 
enough/x and y < 1, one again obtains an exponential decay of  the auto- 
correlation function. As Y increases, i.e., as the range of  interaction increases, 

LO 

0.8 

06 

7=0~ 

02 

0 

- 02  - = .5 _ 

t 

tZ 16 20 24 28 32 56 40 

T 

Fig. 4. Normal ized  m o m e n t u m  autocorre la t ion func t ion  o(r,/x, 7) for  /L = 0.1 and  
y = 0.1 and  y = 0.5. F o r  smal l  values o f  y, one  still obta ins  exponent ia l  re laxat ion for 

small  t~. 



110 R . I .  Cuk ier ,  K. E. Shuler, and J. D. Weeks 

one must go to smaller values of/x to obtain exponential relaxation. In the 
weak-coupling limit, which one can obtain from Eq. (31) by setting 

and holding "r' constant, one finds 

lira pu(/~, )', -r) = [(1 -k ~,)/(1 -- 7)] exp[--/xr/(1 -- ~,)1/2] 

.~=0,~-~ (35) 

The weak-coupling limit thus yields again an exponential relaxation for the 
momentum autocorrelation function. For ), = 0, Eq. (35) reduces to the 
nearest-neighbor interaction result (27). 

It has been demonstrated (1~ that for interactions which are of the form 
Ai5 -- AIi-~I, exponential relaxation is obtained in the limit/z -+ 0 when the 
squared frequency distribution of the equal-mass system (ix = 1) satisfies 

G(eo 2) ~ l/w, co ~ 0 (36) 

for small w. Our interaction matrix satisfies this criterion since one finds 
from Eqs. (31)-(33) that for/~ = 1, 

G(c~ 2) = [(1 -- y2)/co]{[(1 + y)~ -- 4yoJ~](1 -- co2)1/2} -1 (37) 

S. S U H H A R Y  A N D  D ISCUSSION 

Starting with the Hamiltonian for a linear harmonic chain of 2N particles 
with one mass defect particle, we have calculated via analytical dynamics the 
momentum autocorrelation function of the mass defect particle for finite 
chains and for nonzero mass ratios/x. We have shown that one obtains, to a 
very good approximation, an exponential relaxation of the momentum auto- 
correlation function for mass ratios as high as/x = 0.1 and for chains with 
only 50 particles. As is well known, passage to the thermodynamic and weak- 
coupling limits yields the result that the dynamics of the infinite-mass particle 
is rigorously described by a Fokker-Planck equation. This in turn yields the 
rigorous result that the momentum autocorrelation function of the infinite- 
mass particle has an exponential time decay. It is clear from the above results 
that, at least for the harmonic chain studied here, the Fokker-Planck equation 
(or, equivalently, the corresponding Langevin equation) can be used to 
describe, to a very good approximation, the dynamics of a heavy (but not 
necessarily infinitely heavy) particle in a finite chain. The thermodynamic 
limit and the weak-coupling limit, while necessary to obtain rigorous analytic 
results for the validity of stochastic equations of motions, are thus 
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unnecessarily stringent conditions for the use of stochastic equations in 
describing the dynamics of the model considered here. 

One important question which immediately arises is how applicable this 
conclusion is to other systems. Is this true in general or are these findings 
quite specific to the harmonic chain ? We believe that our result on the 
validity (in an approximate rather than rigorous sense) of stochastic equations 
such as the master equation, the Fokker-Planck equation, or the Langevin 
equation far outside (whatever that may mean in any given case) the thermo- 
dynamic and weak-coupling limits is a very general one. Unfortunately, this 
must remain a conjecture for the time being, since we know of no general 
proof. 

A somewhat related study has recently been carried out by Berne and 
Bishop ~11) who investigated via computer calculations the onset of Brownian 
motion in a one-dimensional fluid. They found an exponential relaxation of 
the velocity autocorrelation function for clusters with mass M ~ 25m, where 
m is the mass single fluid particle. Their results thus point definitely in the 
same direction as ours. 

The analytic treatments of this problem imply that the momentum auto- 
correlation function can be written as a series expansion in the coupling 
parameter /L where the leading term is given by the thermodynamic and 
weak-coupling limit result and where the correction terms, arising from 
finite-strength coupling and the finite size of the system, are proportional to 
powers of/z. As we have seen, these correction terms are very small in the 
example considered here. It should be pointed out that it is exceedingly 
difficult to demonstrate analytically that corrections to the "rigorous" 
stochastic equations are indeed proportional to powers of the coupling 
parameter. It is only very recently that it has been shown (1~) that the Langevin 
equation and the Fokker-Planck equation for a heavy particle in a classical 
fluid do have correction terms proportional to the coupling parameter /z  
which are bounded for all times. 
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